ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОВАНАДИЙ

Методы определения кремния

ΓΟCT 13217.4—90

Ferrovanadium. Methods for determination of silicon

(CT C9B 1210-89)

OKCTY 0809

Срок действия <u>с 61.07.91</u> до 01.07.2001

Настоящий стандарт устанавливает гравиметрический и атомно-абсербционный методы определения кремния при массовой доле его от 0,2 до 4,0%.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа - по ГОСТ 27349.

1.2. Лабораторная проба должна быть приготовлена в виде по рошка с максимальным размером частиц 0,16 мм по ГОСТ 26201

2. ГРАВИМЕТРИЧЕСКИЯ МЕТОД

2.1. Сущность метода

Метод основан на выделении из сернокислого раствора кремния в виде кремниевой кислоты, прокаливании ее до диоксида кремния и удалении в виде тетрафторида кремния. Массовую долю кремния вычисляют по разности между массой осадка до обработки фтористоводородной кислоты и массой остатка после обработки фтористоводородной кислотой.

2.2. Реактивы и растворы

Кислота соляная по ГОСТ 3118 и раствор 1:50.

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204, растворы 1:1 н 1:4.

Кислота фтористоводородная по ГОСТ 10484.

Натрия пероксид.

2.3. Проведение анализа

Навеску массой 2,0 г при массовой доле кремния до 0,5% или 1,0 г при массовой доле кремния свыше 0,5% помещают в стакан

вместимостью 250—300 см³ и приливают 50 см³ раствора серной кислоты 1:4.

Нагревают до полного растворения навески, осторожно приливают 5 см³ азотной кислоты и выпаривают раствор до паров серной кислоты, которым дают выделяться в течение 5 мин.

В случае труднорастворимого в кислотах феррованадия навеску помещают в железный или никелевый тигель и смешивают с 5—6 г пероксида натрия. Содержимое тигля нагревают при температуре 300—400 °С до спекания пробы, а затем сплавляют при температуре 650—700 °С в течение 5—6 мин. Затем тигель с плавом охлаждают, помещают в стакан из фторопласта вместимостью 400—500 см³, приливают 80—100 см³ воды и выщелачивают плав без нагревания.

После выщелачивания плава тигель извлекают, протирают его стенки стеклянной палочкой с резиновым наконечником и ополаскивают водой. Раствор осторожно переносят в стеклянный стакан, в котором находится 10 см³ раствора серной кислоты 1:1, и приливают 30 см³ раствора серной кислоты 1:1. Раствор выпаривают до паров серной кислоты, которым дают выделяться 5 мин.

При любом способе разложения содержимое стакана охлаждают, осторожно приливают 10 см³ соляной кислоты, приливают 100—150 см³ теплой воды и нагревают до растворения солей.

Кремниевую кислоту отфильтровывают на фильтр средней плотности с небольшим количеством беззольной фильтробумажной массы. Осадок промывают 9—10 раз горячим раствором соляной кислоты и затем 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат переносят в стакан, снова выпаривают до паров серной кислоты и дополнительно выделяют кремниевую кислоту, как указано выше.

Фильтры с осадком кремниевой кислоты объединяют, помещают в платиновый тигель, высушивают, озоляют и прокаливают в течение 40 мин при температуре 1000—1050 °C.

После охлаждения в тигель с осадком добавляют три капли раствора серной кислоты 1:1, выпаривают до удаления паров серной кислоты и прокаливают при температуре 1000—1050 °C в течение 10 мин.

Тигель с осадком охлаждают в эксикаторе, взвешивают, осадок смачивают несколькими каплями воды, прибавляют 3—4 капли раствора серной кислоты 1:1, 5—6 см³ фтористоводородной кислоты и выпаривают до удаления паров серной кислоты. Затем тигель прокаливают при температуре 1000—1050 °C в течение 15—20 мин, охлаждают в эксикаторе и снова взвешивают.

2.4. Обработка результатов

 2.4.1. Массовую долю кремния (X) в процентах вычисляют по формуле

$$X = \frac{[(m, -m_2) - (m_2 - m_4)] \cdot 0.4674}{m} \cdot 100, \tag{1}$$

гле m₁ — масса тигля с осадком двуокиси кремния до обработки фтористоводородной кислотой, г;

та — масса тигля с остатком после обработки фтористоводородной кислотой, г;

та — масса тигля с осадком контрольного опыта до обработки фтористоводородной кислотой, г;

та — масса тигля с остатком контрольного очыта после обработки фтористоводородной кислотой, г;

0,4674 — коэффициент пересчета двуокиси кремния на кремний; т — масса навески пробы, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в табл. 1.

Таблица 1

Массовая доля кремник, %	Погреш- ность ре- зульта- тов ана аная, %	Долусьзеные расхождения. %			
		двух сред- них резуль- татов зна- лим, выпол ненных в раздичных условиях	двух парал лельных спреде- лений	трех пе- радаель- ных оп- ределе- жый	результатов анализа стендарт- вого образ- ца от этте- стованного значения
От 0,2 до 0,5 включ. Св. 0,5 » 1,0 » » 1,0 » 2,0 » » 2,0 » 4,0 »	0.03 0.04 0.06 0.09	0,04 0,05 0,07 0,11	0,03 0,04 0,06 0,09	0,04 0,05 0,07 0,11	0,02 0,03 0,04 0,06

з. атомно-абсорбционный метод

3.1. Сущность метода

Метод основан на измерении атомной абсорбции кремния в пламени закись азота — ацетилен при длине волны 251,6 нм с предварительным растворением навески пробы в растворе азотной кислоты.

3.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр со всеми принадлежное-

Кислота азотная по ГОСТ 4461, растворы 1:1, 1:20. Кислота соляная по ГОСТ 3118, растворы 1:1 и 1:50. Кислота серная по ГОСТ 4204, раствор 1:1. Кислота фтористоводородная по ГОСТ 10484.

Желатин, раствор 5 г/дм³.

Железо (III) азотнокислое 9-водное по ГОСТ 4111, раствор, содержащий 20 г/дм³ железа: 144,3 г азотнокислого железа растворяют в 500 см³ раствора азотной кислоты 1:20, переносят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают.

Фоновый раствор: 50 г калия-натрия углекислого растворяют в 150 см³ воды, добавляют 50 см³ раствора азотной кислоты 1:1, кипятят до удаления углекислого газа. Раствор охлаждают, переносят в мерную колбу вместимостью 250 см³, доливают до метки

водой и перемешивают.

Натрия гидроокись по ГОСТ 4328, раствор 100 г/дм³; хранят в посуде из полиэтилена.

Калий углекислый — натрий углекислый по ГОСТ 4332.

Кремния двуокись по ГОСТ 9428.

Стандартный раствор кремния: 2,1394 г двуокиси кремния, предварительно прокаленной при температуре 950—1000°С и охлажденной в эксикаторе, помещают в платиновый тигель, прибавляют 6 г калия-натрия углекислого, перемешивают и сплавляют при температуре 800—850°С в течение 30—40 мин.

Тигель охлаждают, плав выщелачивают в 200 см³ горячей воды в стакане из фторопласта и приливают 20 см³ раствора гид-

роксида натрия.

Раствор кремнекислого натрия фильтруют в мерную колбу вместимостью 1 дм3, фильтр промывают 5—6 раз горячей водой и отбрасывают. Раствор в колбе охлаждают, доливают до метки водой, перемешивают и переливают в посуду из полиэтилена. Рас-

твор хранят не более 30 суток.

Для определения массовой концентрации кремния в стакан вместимостью 250 см³ помещают 50,0 см³ стандартного раствора, приливают 30 см³ раствора серной кислоты, нагревают до выделения ее паров, а затем еще 10—15 мин, и охлаждают. Осторожно приливают 15 см³ воды, 10 см³ раствора желатина, перемешивают, приливают 100 см⁴ горячей воды, снова перемешивают и через 5 мин осадок кремниевой кислоты отфильтровывают на фильтр средней плотности с небольшим количеством беззольной фильтробумажной массы. Осадок промывают 9—10 раз горячим раствором соляной кислоты 1:50 и еще 2—3 раза горячей водой.

Фильтр с осадком помещают в платиновый тигель, высушивают и озоляют. Осадок прокаливают при температуре 1000—1050 °С в течение 1 ч, охлаждают в эксикаторе и взвещивают. Затем осадок смачивают 2—3 каплями воды, добавляют 3—4 капли раствора серной кислоты, 5—7 см³ фтористоводородной кислоты и осторожно выпаривают досуха. Остаток в тигле прокаливают при тем-

пера: уре 1000—1050 °C в течение 15 мин, охлаждают в экспкаторе и взвешивают.

Массовую концентрацию стандартного раствора (с), выраженную в граммах на кубический сантиметр кремния, вычисляют по формуле

$$c = \frac{[(m_1 - m_2) - (m_3 - m_s)] \cdot 0.4674}{50},$$
 (2).

где 50 — объем стандартного раствора, взятый для анализа, см^а.

3.3. Проведение анализа

3.3.1. Навеску пробы массой 0,5 г помещают в стакан или колбу вместимостью 100 см³, приливают 15 см³ раствора азотной кислоты 1:1 и растворяют без нагревания. После растворения добавляют 15 см³ воды и кипятят до удаления оксидов азота. Раствор фильтруют через фильтр средней плотности в колбу вместимостью 100 см³, фильтр промывают несколько раз горячей водой. Фильтрат сохраняют.

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют и прокаливают при температуре 650—700°С до полного выгорания углерода. Остаток сплавляют с 1 г калия-натрия угле-

кислого при температуре 800-850°C в течение 10 мин.

Плав выщелачивают в горячей воде, добавляют по каплям при перемешивании раствор азотной кислоты 1:1 до удаления угле-кислого газа. Раствор охлаждают, объединяют с основным фильтратом, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

3.3.2. Атомную абсорбцию кремния измеряют параллельно в растворе контрольного опыта, растворе пробы и растворах для построения градуировочного графика при длине волны 251,6 нм в

пламени закись азота-ацетилен.

 З.З.З. После вычитания значения атомной абсорбции раствора контрольного опыта из значения атомной абсорбции раствора пробы находят массу кремния по градупровочному графику.

Таблица 2

Массовая доля кремяня, %	Масса креминя в атоми- зируемом растворе, мг	Объем стандартного раствора, см ³
Or 0.2 до 1 включ.	1-5	1-5
Cs. 1 > 2 »	5-10	5-10
> 2 » 4 »	10-20	10-20

3.3.4. Для построения градуировочного графика в колбы вместимостью по 100 см³, помещают стандартный раствор кремния в соответствии с табл. 2. В одну из колб стандартный раствор не добавляют; во все колбы добавляют по 10 см³ раствора нитрата железа, 5 см³ фонового раствора, 15 см³ раствора азотной кислоты 1:1, доливают водой до метки и перемешивают.

Градунровочный график строят по результатам, полученным после вычитания значения абсорбции раствора, не содержащего стандартный раствор кремния, из значений абсорбции растворов, содержащих стандартный раствор, и соответствующим им массам

кремния.

3.4. Обработка результатов

 3.4.1. Массовую долю кремния (X) в процентах вычисляют поформуле

$$X = \frac{m_5}{m} \cdot 100,$$
 (3)

тде m_5 — масса кремния в растворе пробы, найденная по градуировочному графику, г;

т — масса навески пробы, г.

 З.4.2. Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в табл. 1.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. Г. Мизин, Т. А. Перфильева, С. И. Ахманаев, Л. М. Клейнер, Г. И. Гусева
- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 04.05.90 № 1094
- 3. B3AMEH FOCT 13217.4-79
- 4. Стандарт полностью соответствует СТ СЭВ 1210-89
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
FOCT 3118—77	22, 32		
FOCT 4111-74	1 3.2		
ΓΟCT 4204-77	22,32		
FOCT 4328-77	3.2		
ΓOCT 4332—76	3.2		
ΓΟCT 4461-77	2.2. 3.2		
ГОСТ 9428—73	3.2		
FOCT 10484-78	2.2. 3.2		
FOCT 25201-84	1 1 9		
FOCT 2734987	111	14	